Publikationen: Unterschied zwischen den Versionen

Aus Validad
Zur Navigation springen Zur Suche springen
K (Kategorisiert)
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 7: Zeile 7:
Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046
Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046


Reisch, R.T.; Hauser, T.; Frank, J.; Heinrich, F.; Theodorou, K.; Kamps, T.; Knoll, A. (2021). Nozzle-to-Work Distance Measurement and Control in Wire Arc Additive Manufacturing. https://doi.org/10.1145/3501774.3501798
Reisch, R.T.; Hauser, T.; Franke, J.; Heinrich, F.; Theodorou, K.; Kamps, T.; Knoll, A. (2021). Nozzle-to-Work Distance Measurement and Control in Wire Arc Additive Manufacturing. https://doi.org/10.1145/3501774.3501798


Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes.
Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes.
Zeile 22: Zeile 22:
Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. ([[Prozessorientierter_Digitaler_Zwilling_in_WAAM]])
Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. ([[Prozessorientierter_Digitaler_Zwilling_in_WAAM]])


[[Kategorie:Geprüfte Artikel]]
[[Kategorie:Veröffentlichungsreif]]

Aktuelle Version vom 22. März 2023, 06:14 Uhr

Ochs, D., Wehnert, K.K., Hartmann, J., Schiffler, A., Schmitt, J., 2021. Sustainable Aspects of a Metal Printing Process Chain with Laser Powder Bed Fusion (LPBF). Procedia CIRP 98, 613–618. https://doi.org/10.1016/j.procir.2021.01.163

Wehnert, K.K., Ochs, D., Schmitt, J., Hartmann, J., Schiffler, A., 2021. Reducing Lifecycle Costs due to Profile Scanning of the Powder Bed in Metal Printing. Procedia CIRP 98, 684–689. https://doi.org/10.1016/j.procir.2021.01.175

Wehnert, K.K., Schäfer, S., Schmitt, Jan, Schiffler, Andreas. (2021). Application of Laser Line Scanners for Quality Control during Selective Laser Melting (SLM). https://doi.org/10.5162/SMSI2021/C7.4

Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046

Reisch, R.T.; Hauser, T.; Franke, J.; Heinrich, F.; Theodorou, K.; Kamps, T.; Knoll, A. (2021). Nozzle-to-Work Distance Measurement and Control in Wire Arc Additive Manufacturing. https://doi.org/10.1145/3501774.3501798

Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes. https://doi.org/10.3390/en13236346}

Florian, S.; Uddehal , S. R.; Lodermeyer, A.; Bagheri, E.M..; Forster-Heinlein, B.; Becker, S. (2021). Interaction of flow pattern and heat transfer in oscillating heat pipes for hot spot applications. https://doi.org/10.1016/j.applthermaleng.2021.117334

Florian, S.; Messmer, P.; Lodermeyer, A.; Danov, V.; Flessner, C.; Becker, S.; Hellinger, R. (2021). Analysis of improved pulsating heat pipe designs for hot spot applications. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123294

Hauser, T. (2022). In-situ analysis of process characteristics in Directed Energy Deposition. ISBN: 978-91-7790-998-9

Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. (Prozessorientierter_Digitaler_Zwilling_in_WAAM)