Publikationen: Unterschied zwischen den Versionen
Reisch (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Fhws (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(2 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 7: | Zeile 7: | ||
Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046 | Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046 | ||
Reisch, R.T.; Hauser, T.; | Reisch, R.T.; Hauser, T.; Franke, J.; Heinrich, F.; Theodorou, K.; Kamps, T.; Knoll, A. (2021). Nozzle-to-Work Distance Measurement and Control in Wire Arc Additive Manufacturing. https://doi.org/10.1145/3501774.3501798 | ||
Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes. | Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes. | ||
Zeile 21: | Zeile 21: | ||
Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. ([[Prozessorientierter_Digitaler_Zwilling_in_WAAM]]) | Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. ([[Prozessorientierter_Digitaler_Zwilling_in_WAAM]]) | ||
[[Kategorie:Veröffentlichungsreif]] |
Aktuelle Version vom 22. März 2023, 06:14 Uhr
Ochs, D., Wehnert, K.K., Hartmann, J., Schiffler, A., Schmitt, J., 2021. Sustainable Aspects of a Metal Printing Process Chain with Laser Powder Bed Fusion (LPBF). Procedia CIRP 98, 613–618. https://doi.org/10.1016/j.procir.2021.01.163
Wehnert, K.K., Ochs, D., Schmitt, J., Hartmann, J., Schiffler, A., 2021. Reducing Lifecycle Costs due to Profile Scanning of the Powder Bed in Metal Printing. Procedia CIRP 98, 684–689. https://doi.org/10.1016/j.procir.2021.01.175
Wehnert, K.K., Schäfer, S., Schmitt, Jan, Schiffler, Andreas. (2021). Application of Laser Line Scanners for Quality Control during Selective Laser Melting (SLM). https://doi.org/10.5162/SMSI2021/C7.4
Höfflin, D.; Rosilius, M.; Seitz, P.; Schiffler, A.; Hartmann, J. Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance. Sensors 2022, 22, 46. https://doi.org/10.3390/s22010046
Reisch, R.T.; Hauser, T.; Franke, J.; Heinrich, F.; Theodorou, K.; Kamps, T.; Knoll, A. (2021). Nozzle-to-Work Distance Measurement and Control in Wire Arc Additive Manufacturing. https://doi.org/10.1145/3501774.3501798
Florian, S.; Danov, V.; Lodermeyer, A.; Hensler, A.; Becker, S. (2020). Thermodynamic Analysis of the Dryout Limit of Oscillating Heat Pipes. https://doi.org/10.3390/en13236346}
Florian, S.; Uddehal , S. R.; Lodermeyer, A.; Bagheri, E.M..; Forster-Heinlein, B.; Becker, S. (2021). Interaction of flow pattern and heat transfer in oscillating heat pipes for hot spot applications. https://doi.org/10.1016/j.applthermaleng.2021.117334
Florian, S.; Messmer, P.; Lodermeyer, A.; Danov, V.; Flessner, C.; Becker, S.; Hellinger, R. (2021). Analysis of improved pulsating heat pipe designs for hot spot applications. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123294
Hauser, T. (2022). In-situ analysis of process characteristics in Directed Energy Deposition. ISBN: 978-91-7790-998-9
Reisch, R.T. (20xx). Process-oriented Digital Twin for Wire Arc Additive Manufacturing. (Prozessorientierter_Digitaler_Zwilling_in_WAAM)